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Appendixes

Appendix One Mathematical Procedures

A1.1 Exponential Notation
The numbers characteristic of scientific measurements are often very large or very small;
thus it is convenient to express them using powers of 10. For example, the number
1,300,000 can be expressed as 1.3 � 106, which means multiply 1.3 by 10 six times,
or

Note that each multiplication by 10 moves the decimal point one place to the right:

Thus the easiest way to interpret the notation 1.3 � 106 is that it means move the deci-
mal point in 1.3 to the right six times:

1 2 3 4 5 6

Using this notation, the number 1985 can be expressed as 1.985 � 103. Note that the
usual convention is to write the number that appears before the power of 10 as a number
between 1 and 10. To end up with the number 1.985, which is between 1 and 10, we had
to move the decimal point three places to the left. To compensate for that, we must mul-
tiply by 103, which says that to get the intended number we start with 1.985 and move
the decimal point three places to the right; that is:

1 2 3

Some other examples are given below.

Number Exponential Notation

5.6
39

943
1126

So far we have considered numbers greater than 1. How do we represent a number
such as 0.0034 in exponential notation? We start with a number between 1 and 10 and
divide by the appropriate power of 10:

0.0034 �
3.4

10 � 10 � 10
�

3.4

103 � 3.4 � 10�3

1.126 � 103
9.43 � 102
3.9 � 101
5.6 � 100 or 5.6 � 1

1.985 � 103 � 1 9 8 5.

1.3 � 106 � 1 3 0 0 0 0 0 � 1,300,000

o
 130 � 10 � 1300.

 13 � 10 � 130.

 1.3 � 10 � 13.

106 � 1 million

1.3 � 106 � 1.3 � 10 � 10 � 10 � 10 � 10 � 10
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Division by 10 moves the decimal point one place to the left. Thus the number

0. 0 0 0 0 0 0 1 4

7 6 5 4 3 2 1

can be written as 1.4 � 10�7.
To summarize, we can write any number in the form

where N is between 1 and 10 and the exponent n is an integer. If the sign preceding n is
positive, it means the decimal point in N should be moved n places to the right. If a neg-
ative sign precedes n, the decimal point in N should be moved n places to the left.

Multiplication and Division
When two numbers expressed in exponential notation are multiplied, the initial numbers
are multiplied and the exponents of 10 are added:

For example (to two significant figures, as required),

When the numbers are multiplied, if a result greater than 10 is obtained for the initial num-
ber, the decimal point is moved one place to the left and the exponent of 10 is increased
by 1:

(two significant figures)

Division of two numbers expressed in exponential notation involves normal division
of the initial numbers and subtraction of the exponent of the divisor from that of the div-
idend. For example,

Divisor

If the initial number resulting from the division is less than 1, the decimal point is moved
one place to the right and the exponent of 10 is decreased by 1. For example,

Addition and Subtraction
To add or subtract numbers expressed in exponential notation, the exponents of the num-
bers must be the same. For example, to add 1.31 � 105 and 4.2 � 104, we must rewrite
one number so that the exponents of both are the same. The number 1.31 � 105 can be
written 13.1 � 104, since moving the decimal point one place to the right can be com-
pensated for by decreasing the exponent by 1. Now we can add the numbers:

13.1 � 104

� 4.2 � 104

  17.3 � 104

� 7.7 � 10�3

6.4 � 103

8.3 � 105 �
6.4

8.3
� 1013�52 � 0.77 � 10�2

4.8 � 108

2.1 � 103 �
4.8

2.1
� 1018�32 � 2.3 � 105

� 2.5 � 1011

� 2.49 � 1011

15.8 � 1022 14.3 � 1082 � 24.9 � 1010

13.2 � 1042 12.8 � 1032 � 9.0 � 107

1M � 10m2 1N � 10n2 � 1MN2 � 10m �n

N � 10� n

⎧ ⎪ ⎨ ⎪ ⎩
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In correct exponential notation the result is expressed as 1.73 � 105.
To perform addition or subtraction with numbers expressed in exponential notation, only

the initial numbers are added or subtracted. The exponent of the result is the same as those
of the numbers being added or subtracted. To subtract 1.8 � 102 from 8.99 � 103, we write

8.99 � 103

�0.18 � 103

8.81 � 103

Powers and Roots
When a number expressed in exponential notation is taken to some power, the initial num-
ber is taken to the appropriate power and the exponent of 10 is multiplied by that power:

For example,*

(two significant figures)

When a root is taken of a number expressed in exponential notation, the root of the
initial number is taken and the exponent of 10 is divided by the number representing the
root:

For example,

Because the exponent of the result must be an integer, we may sometimes have to change the
form of the number so that the power divided by the root equals an integer. For example,

In this case, we moved the decimal point one place to the left and increased the exponent
from 3 to 4 to make n�2 an integer.

The same procedure is followed for roots other than square roots. For example,

and

� 3.6 � 103

� 13 46 � 103

23 4.6 � 1010 � 14.6 � 101021�3 � 146 � 10921�3

� 8.8 � 101

� 0.88 � 102

� 13 0.69 � 102

23 6.9 � 105 � 16.9 � 10521�3 � 10.69 � 10621�3

� 4.4 � 101

� 0.44 � 102

� 10.19 � 102

21.9 � 103 � 11.9 � 10321�2 � 10.19 � 10421�2

� 1.7 � 103

12.9 � 10621�2 � 12.9 � 106�2

1N � 10n � 1n � 10n21�2 � 1N � 10n�2

� 4.2 � 108

� 4.22 � 108

� 422  � 106

17.5 � 10223 � 7.53 � 103�2

1N � 10n2m � N m � 10m�n

*Refer to the instruction booklet for your calculator for directions concerning how to take roots
and powers of numbers.
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A1.2 Logarithms
A logarithm is an exponent. Any number N can be expressed as follows:

For example,

The common, or base 10, logarithm of a number is the power to which 10 must be taken
to yield the number. Thus, since 1000 � 103,

Similarly,

For a number between 10 and 100, the required exponent of 10 will be between 1 and 2. For
example, 65 � 101.8129; that is, log 65 � 1.8129. For a number between 100 and 1000, the
exponent of 10 will be between 2 and 3. For example, 650 � 102.8129 and log 650 � 2.8129.

A number N greater than 0 and less than 1 can be expressed as follows:

For example,

Thus

Although common logs are often tabulated, the most convenient method for obtain-
ing such logs is to use an electronic calculator. On most calculators the number is first
entered and then the log key is punched. The log of the number then appears in the display.*
Some examples are given below. You should reproduce these results on your calculator to
be sure that you can find common logs correctly.

Number Common Log

36 1.56
1849 3.2669

0.156 �0.807
�4.7751.68 � 10�5

 log 0.1 � �1

 log 0.01 � �2

 log 0.001 � �3

 0.1 �
1

10
�

1

101 � 10�1

 0.01 �
1

100
�

1

102 � 10�2

 0.001 �
1

1000
�

1

103 � 10�3

N � 10�x �
1

10x

 log 1 � 0

 log 10 � 1

 log 100 � 2

log 1000 � 3

 1 � 100

 10 � 101

 100 � 102

 1000 � 103

N � 10x

*Refer to the instruction booklet for your calculator for the exact sequence to obtain logarithms.
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Note that the number of digits after the decimal point in a common log is equal to the
number of significant figures in the original number.

Since logs are simply exponents, they are manipulated according to the rules for ex-
ponents. For example, if A � 10 x and B � 10 y, then their product is

and

For division, we have

and

For a number raised to a power, we have

and

It follows that

or, for n � 1,

When a common log is given, to find the number it represents, we must carry out the
process of exponentiation. For example, if the log is 2.673, then N � 102.673. The process
of exponentiation is also called taking the antilog, or the inverse logarithm. This operation
is usually carried out on calculators in one of two ways. The majority of calculators require
that the log be entered first and then the keys  INV and LOG pressed in succession. For ex-
ample, to find N � 102.673 we enter 2.673 and then press INV and LOG . The number 471
will be displayed; that is, N � 471. Some calculators have a 10x key. In that case, the log
is entered first and then the 10x key is pressed. Again, the number 471 will be displayed.

Natural logarithms, another type of logarithm, are based on the number 2.7183, which is
referred to as e. In this case, a number is represented as N � ex � 2.7183x. For example,

To find the natural log of a number using a calculator, the number is entered and then the
ln key is pressed. Use the following examples to check your technique for finding nat-

ural logs with your calculator:

Number (e x) Natural Log(x)

784 6.664
7.384

�16.118
1.00 0
1.00 � 10�7

1.61 � 103

ln 7.15 � x � 1.967

N � 7.15 � ex

log
1

A
� �log A

log
1

An � log A�n � �n log A

log An � nx � n log A

An � 110x2n � 10nx

log
A

B
� x � y � log A � log B

A

B
�

10x

10y � 10x�y

log AB � x � y � log A � log B

A � B � 10x � 10y � 10x�y



A6 Appendixes

If a natural logarithm is given, to find the number it represents, exponentiation to the
base e (2.7183) must be carried out. With many calculators this is done using a key marked

ex (the natural log is entered, with the correct sign, and then the  ex key is pressed).
The other common method for exponentiation to base e is to enter the natural log and
then press the INV and ln keys in succession. The following examples will help you
check your technique:

ln N(x) N(e x)

3.256 25.9
�5.169
13.112

Since natural logarithms are simply exponents, they are also manipulated according to
the mathematical rules for exponents given earlier for common logs.

A1.3 Graphing Functions
In interpreting the results of a scientific experiment, it is often useful to make a graph. If
possible, the function to be graphed should be in a form that gives a straight line. The
equation for a straight line (a linear equation) can be represented by the general form

where y is the dependent variable, x is the independent variable, m is the slope, and b is
the intercept with the y axis.

To illustrate the characteristics of a linear equation, the function y � 3x � 4 is plotted
in Fig. A.1. For this equation m � 3 and b � 4. Note that the y intercept occurs when x �
0. In this case the intercept is 4, as can be seen from the equation (b � 4).

The slope of a straight line is defined as the ratio of the rate of change in y to that in x:

For the equation y � 3x � 4, y changes three times as fast as x (since x has a coefficient
of 3). Thus the slope in this case is 3. This can be verified from the graph. For the trian-
gle shown in Fig. A.1,

¢y � 34 � 10 � 24 and ¢x � 10 � 2 � 8

m � slope �
¢y

¢x

y � mx � b

4.95 � 105
5.69 � 10�3

Intercept

60
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y

x

y�3x�4

�y 

�x 

10 20 30 40FIGURE A.1
Graph of the linear equation y � 3x � 4.
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Thus

The preceding example illustrates a general method for obtaining the slope of a line
from the graph of that line. Simply draw a triangle with one side parallel to the y axis
and the other parallel to the x axis as shown in Fig. A.1. Then determine the lengths of
the sides to give �y and �x, respectively, and compute the ratio �y��x.

Sometimes an equation that is not in standard form can be changed to the form 
y � mx � b by rearrangement or mathematical manipulation. An example is the equation
k � Ae�Ea�RT described in Section 12.7, where A, Ea, and R are constants; k is the dependent
variable; and 1�T is the independent variable. This equation can be changed to standard
form by taking the natural logarithm of both sides,

noting that the log of a product is equal to the sum of the logs of the individual terms and
that the natural log of e�Ea�RT is simply the exponent �Ea�RT. Thus, in standard form, the
equation k � Ae�Ea�RT is written

h
h h

h
y

m x
b

A plot of ln k versus 1�T (see Fig. A.2) gives a straight line with slope �Ea�R and in-
tercept ln A.

Other linear equations that are useful in the study of chemistry are listed in standard
form in Table A.1.

A1.4 Solving Quadratic Equations
A quadratic equation, a polynomial in which the highest power of x is 2, can be written
as

One method for finding the two values of x that satisfy a quadratic equation is to use the
quadratic formula:

x �
�b � 2b2 � 4ac

2a

ax2 � bx � c � 0

ln k � �
Ea

R
 a1

T
b � ln A

ln k � ln Ae�Ea �RT � ln A � ln e�Ea �RT � ln A �
Ea

RT

Slope �
¢y

¢x
�

24

8
� 3

 Slope  = −
Ea

R

 Intercept = ln A

1
T

ln k

FIGURE A.2
Graph of ln k versus 1/T.

TABLE A.1 Some Useful Linear Equations in Standard Form

What Is
Equation Plotted Slope Intercept Section

( y � mx � b) ( y vs. x) (m) (b) in Text

�k 12.4
�k 12.4

k 12.4

C 10.8
�¢Hvap

R
ln Pvap vs.

1

T
ln Pvap � �

¢Hvap

R
a1

T
b � C

13A 4013A 4  vs. t
13A 4 � kt �

13A 4 0
ln 3A 4 0ln 3A 4  vs. tln 3A 4 � �kt � ln 3A 4 0 3A 4 03A 4  vs. t3A 4 � �kt � 3A 4 0

⎧ ⎨ ⎩

{ { {
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where a, b, and c are the coefficients of x2 and x and the constant, respectively. For example,
in determining [H�] in a solution of 1.0 � 10�4 M acetic acid the following expression
arises:

which yields

where a � 1, b � 1.8 � 10�5, and c � �1.8 � 10�9. Using the quadratic formula, we
have

Thus

and

Note that there are two roots, as there always will be, for a polynomial in x2. In this case
x represents a concentration of H� (see Section 14.3). Thus the positive root is the one
that solves the problem, since a concentration cannot be a negative number.

A second method for solving quadratic equations is by successive approximations, a
systematic method of trial and error. A value of x is guessed and substituted into the equa-
tion everywhere x (or x2) appears, except for one place. For example, for the equation

we might guess x � 2 � 10�5. Substituting that value into the equation gives

or

Thus

Note that the guessed value of x(2 � 10�5) is not the same as the value of x that is cal-
culated (3.7 � 10�5) after inserting the estimated value. This means that x � 2 � 10�5

is not the correct solution, and we must try another guess. We take the calculated value
(3.7 � 10�5) as our next guess:

x2 � 1.8 � 10�9 � 6.7 � 10�10 � 1.1 � 10�9

x2 � 11.8 � 10�52 13.7 � 10�52 � 1.8 � 10�9 � 0

x � 3.7 � 10�5

x2 � 1.8 � 10�9 � 3.6 � 10�10 � 1.4 � 10�9

x2 � 11.8 � 10�52 12 � 10�52 � 1.8 � 10�9 � 0

x2 � 11.8 � 10�52x � 1.8 � 10�9 � 0

x �
�10.5 � 10�5

2
� �5.2 � 10�5

x �
6.9 � 10�5

2
� 3.5 � 10�5

�
�1.8 � 10�5 � 8.7 � 10�5

2

�
�1.8 � 10�5 � 27.5 � 10�9

2

�
�1.8 � 10�5 � 23.24 � 10�10 � 7.2 � 10�9

2

�
�1.8 � 10�5 � 23.24 � 10�10 � 142 112 1�1.8 � 10�92

2112
x �

�b � 2b2 � 4ac

2a

x2 � 11.8 � 10�52x � 1.8 � 10�9 � 0

1.8 � 10�5 �
x2

1.0 � 10�4 � x
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Thus

Now we compare the two values of x again:

These values are closer but not close enough. Next we try 3.3 � 10�5 as our guess:

Thus

Again we compare:

Next we guess x � 3.5 � 10�5 to give

Thus

Now the guessed value and the calculated value are the same; we have found the correct
solution. Note that this agrees with one of the roots found with the quadratic formula in
the first method.

To further illustrate the method of successive approximations, we will solve Sample
Exercise 14.17 using this procedure. In solving for [H�] for 0.010 M H2SO4, we obtain
the following expression:

which can be rearranged to give

We will guess a value for x, substitute it into the right side of the equation, and then cal-
culate a value for x. In guessing a value for x, we know it must be less than 0.010, since
a larger value will make the calculated value for x negative and the guessed and calcu-
lated values will never match. We start by guessing x � 0.005.

The results of the successive approximations are shown in the following table:

Guessed Calculated
Trial Value for x Value for x

1 0.0050 0.0040
2 0.0040 0.0051
3 0.00450 0.00455
4 0.00452 0.00453

Note that the first guess was close to the actual value and that there was oscillation be-
tween 0.004 and 0.005 for the guessed and calculated values. For trial 3, an average of

x � 11.2 � 10�22 a0.010 � x

0.010 � x
b

1.2 � 10�2 �
x10.010 � x2

0.010 � x

x � 3.5 � 10�5

x2 � 1.8 � 10�9 � 6.3 � 10�10 � 1.2 � 10�9

x2 � 11.8 � 10�52 13.5 � 10�52 � 1.8 � 10�9 � 0

Calculated: x � 3.5 � 10�5

Guessed:  x � 3.3 � 10�5

x � 3.5 � 10�5

x2 � 1.8 � 10�9 � 5.9 � 10�10 � 1.2 � 10�9

x2 � 11.8 � 10�52 13.3 � 10�52 � 1.8 � 10�9 � 0

Calculated: x � 3.3 � 10�5

Guessed:  x � 3.7 � 10�5

x � 3.3 � 10�5
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these values was used as the guess, and this led rapidly to the correct value (0.0045 to the
correct number of significant figures). Also, note that it is useful to carry extra digits un-
til the correct value is obtained. That value can then be rounded off to the correct num-
ber of significant figures.

The method of successive approximations is especially useful for solving polynomi-
als containing x to a power of 3 or higher. The procedure is the same as for quadratic
equations: Substitute a guessed value for x into the equation for every x term but one, and
then solve for x. Continue this process until the guessed and calculated values agree.

A1.5 Uncertainties in Measurements
Like all the physical sciences, chemistry is based on the results of measurements. Every
measurement has an inherent uncertainty, so if we are to use the results of measurements
to reach conclusions, we must be able to estimate the sizes of these uncertainties.

For example, the specification for a commercial 500-mg acetaminophen (the active
painkiller in Tylenol) tablet is that each batch of tablets must contain 450 to 550 mg of acet-
aminophen per tablet. Suppose that chemical analysis gave the following results for a batch
of acetaminophen tablets: 428 mg, 479 mg, 442 mg, and 435 mg. How can we use these
results to decide if the batch of tablets meets the specification? Although the details of how
to draw such conclusions from measured data are beyond the scope of this text, we will con-
sider some aspects of how this is done. We will focus here on the types of experimental
uncertainty, the expression of experimental results, and a simplified method for estimating
experimental uncertainty when several types of measurement contribute to the final result.

Types of Experimental Error
There are two types of experimental uncertainty (error). A variety of names are applied
to these types of errors:

Precision random error indeterminate error

Accuracy systematic error determinate error

The difference between the two types of error is well illustrated by the attempts to hit a
target shown in Fig. 1.7 in Chapter 1.

Random error is associated with every measurement. To obtain the last significant fig-
ure for any measurement, we must always make an estimate. For example, we interpolate
between the marks on a meter stick, a buret, or a balance. The precision of replicate meas-
urements (repeated measurements of the same type) reflects the size of the random er-
rors. Precision refers to the reproducibility of replicate measurements.

The accuracy of a measurement refers to how close it is to the true value. An inac-
curate result occurs as a result of some flaw (systematic error) in the measurement: the
presence of an interfering substance, incorrect calibration of an instrument, operator er-
ror, and so on. The goal of chemical analysis is to eliminate systematic error, but random
errors can only be minimized. In practice, an experiment is almost always done to find an
unknown value (the true value is not known—someone is trying to obtain that value by
doing the experiment). In this case the precision of several replicate determinations is used
to assess the accuracy of the result. The results of the replicate experiments are expressed
as an average (which we assume is close to the true value) with an error limit that gives
some indication of how close the average value may be to the true value. The error limit
represents the uncertainty of the experimental result.

Expression of Experimental Results
If we perform several measurements, such as for the analysis for acetaminophen in
painkiller tablets, the results should express two things: the average of the measurements
and the size of the uncertainty.

K·
K·
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There are two common ways of expressing an average: the mean and the median. The
mean (x�) is the arithmetic average of the results, or

where � means take the sum of the values. The mean is equal to the sum of all the meas-
urements divided by the number of measurements. For the acetaminophen results given
previously, the mean is

The median is the value that lies in the middle among the results. Half the meas-
urements are above the median and half are below the median. For results of 465 mg,
485 mg, and 492 mg, the median is 485 mg. When there is an even number of results,
the median is the average of the two middle results. For the acetaminophen results, the
median is

There are several advantages to using the median. If a small number of measurements
is made, one value can greatly affect the mean. Consider the results for the analysis of
acetaminophen: 428 mg, 479 mg, 442 mg, and 435 mg. The mean is 446 mg, which is
larger than three of the four weights. The median is 438 mg, which lies near the three val-
ues that are relatively close to one another.

In addition to expressing an average value for a series of results, we must express the
uncertainty. This usually means expressing either the precision of the measurements or
the observed range of the measurements. The range of a series of measurements is de-
fined by the smallest value and the largest value. For the analytical results on the aceta-
minophen tablets, the range is from 428 mg to 479 mg. Using this range, we can express
the results by saying that the true value lies between 428 mg and 479 mg. That is, we can
express the amount of acetaminophen in a typical tablet as 446 � 33 mg, where the er-
ror limit is chosen to give the observed range (approximately).

The most common way to specify precision is by the standard deviation, s, which for
a small number of measurements is given by the formula

where xi is an individual result, x� is the average (either mean or median), and n is the to-
tal number of measurements. For the acetaminophen example, we have

Thus we can say the amount of acetaminophen in the typical tablet in the batch of tablets
is 446 mg with a sample standard deviation of 23 mg. Statistically this means that any
additional measurement has a 68% probability (68 chances out of 100) of being between
423 mg (446 � 23) and 469 mg (446 � 23). Thus the standard deviation is a measure
of the precision of a given type of determination.

The standard deviation gives us a means of describing the precision of a given type
of determination using a series of replicate results. However, it is also useful to be able to
estimate the precision of a procedure that involves several measurements by combining
the precisions of the individual steps. That is, we want to answer the following question:

s � c 1428 � 44622 � 1479 � 44622 � 1442 � 44622 � 1435 � 44622
4 � 1

d 1�2

� 23

s � £ ani�1
1xi � x22

n � 1

§ 1�2

442 � 435

2
� 438 mg

x �
428 � 479 � 442 � 435

4
� 446 mg

Mean � x � a
n

i�1

xi

n
�

x1 � x2 � p � xn

n
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How do the uncertainties propagate when we combine the results of several different types
of measurements? There are many ways to deal with the propagation of uncertainty. We
will discuss only one simple method here.

A Simplified Method for Estimating Experimental Uncertainty
To illustrate this method, we will consider the determination of the density of an irregu-
larly shaped solid. In this determination we make three measurements. First, we measure
the mass of the object on a balance. Next, we must obtain the volume of the solid. The
easiest method for doing this is to partially fill a graduated cylinder with a liquid and
record the volume. Then we add the solid and record the volume again. The difference in
the measured volumes is the volume of the solid. We can then calculate the density of the
solid from the equation

where M is the mass of the solid, V1 is the initial volume of liquid in the graduated
cylinder, and V2 is the volume of liquid plus solid. Suppose we get the following 
results:

The calculated density is

Now suppose that the precision of the balance used is �0.02 g and that the volume
measurements are precise to �0.05 mL. How do we estimate the uncertainty of the den-
sity? We can do this by assuming a worst case. That is, we assume the largest uncertain-
ties in all measurements, and see what combinations of measurements will give the largest
and smallest possible results (the greatest range). Since the density is the mass divided by
the volume, the largest value of the density will be that obtained using the largest possi-
ble mass and the smallest possible volume:

Largest possible mass � 23.06 � .02
o

p r
Smallest possible V2 Largest possible V1

The smallest value of the density is

Smallest possible mass
o

p r
Largest possible V2 Smallest possible V1

Thus the calculated range is from 7.20 to 7.69 and the average of these values is 7.44.
The error limit is the number that gives the high and low range values when added and
subtracted from the average. Therefore, we can express the density as 7.44 � 0.25 g/mL,
which is the average value plus or minus the quantity that gives the range calculated by
assuming the largest uncertainties.

Dmin �
23.04

13.35 � 10.35
� 7.20 g/mL

Dmax �
23.08

13.45 � 10.45
� 7.69 g/mL

23.06 g

13.5 mL � 10.4 mL
� 7.44 g/mL

V2 � 13.5 mL

V1 � 10.4 mL

M � 23.06 g

D �
M

V2 � V1
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Analysis of the propagation of uncertainties is useful in drawing qualitative conclu-
sions from the analysis of measurements. For example, suppose that we obtained the pre-
ceding results for the density of an unknown alloy and we want to know if it is one of
the following alloys:

Alloy A: D � 7.58 g/mL

Alloy B: D � 7.42 g/mL

Alloy C: D � 8.56 g/mL

We can safely conclude that the alloy is not C. But the values of the densities for alloys
A and B are both within the inherent uncertainty of our method. To distinguish between
A and B, we need to improve the precision of our determination: The obvious choice is
to improve the precision of the volume measurement.

The worst-case method is very useful in estimating uncertainties when the results of
several measurements are combined to calculate a result. We assume the maximum un-
certainty in each measurement and calculate the minimum and maximum possible result.
These extreme values describe the range and thus the error limit.

Appendix Two The Quantitative Kinetic Molecular Model

We have seen that the kinetic molecular model successfully accounts for the properties of
an ideal gas. This appendix will show in some detail how the postulates of the kinetic
molecular model lead to an equation corresponding to the experimentally obtained ideal
gas equation.

Recall that the particles of an ideal gas are assumed to be volumeless, to have no at-
traction for each other, and to produce pressure on their container by colliding with the
container walls.

Suppose there are n moles of an ideal gas in a cubical container with sides each of
length L. Assume each gas particle has a mass m and that it is in rapid, random, straight-
line motion colliding with the walls, as shown in Fig. A.3. The collisions will be assumed
to be elastic—no loss of kinetic energy occurs. We want to compute the force on the walls
from the colliding gas particles and then, since pressure is force per unit area, to obtain
an expression for the pressure of the gas.

Before we can derive the expression for the pressure of a gas, we must first discuss
some characteristics of velocity. Each particle in the gas has a particular velocity u that
can be divided into components ux, uy, and uz, as shown in Fig. A.4. First, using ux and uy

and the Pythagorean theorem, we can obtain uxy as shown in Fig. A.4(c):

p r r
Hypotenuse of Sides of
right triangle right triangle

Then, constructing another triangle as shown in Fig. A.4(c), we find

h

or

Now let’s consider how an “average” gas particle moves. For example, how often does
this particle strike the two walls of the box that are perpendicular to the x axis? It is impor-
tant to realize that only the x component of the velocity affects the particle’s impacts on these
two walls, as shown in Fig. A.5(a). The larger the x component of the velocity, the faster the
particle travels between these two walls, and the more impacts per unit of time it will make
on these walls. Remember, the pressure of the gas is due to these collisions with the walls.

u2 � ux
2 � uy

2 � uz
2

u2 � uxy
2 � uz

2

uxy
2 � ux

2 � uy
2

L

L

L

FIGURE A.3
An ideal gas particle in a cube whose
sides are of length L. The particle collides
elastically with the walls in a random,
straight-line motion.

⎧⎪⎨⎪⎩



A14 Appendixes

The collision frequency (collisions per unit of time) with the two walls that are
perpendicular to the x axis is given by

Next, what is the force of a collision? Force is defined as mass times acceleration
(change in velocity per unit of time):

where F represents force, a represents acceleration, �u represents a change in velocity, and
�t represents a given length of time.

Since we assume that the particle has constant mass, we can write

The quantity mu is the momentum of the particle (momentum is the product of mass and
velocity), and the expression F � �(mu)��t implies that force is the change in momen-
tum per unit of time. When a particle hits a wall perpendicular to the x axis, as shown in
Fig. A.5(b), an elastic collision results in an exact reversal of the x component of veloc-
ity. That is, the sign, or direction, of ux reverses when the particle collides with one of the
walls perpendicular to the x axis. Thus the final momentum is the negative, or opposite,
of the initial momentum. Remember that an elastic collision means that there is no change
in the magnitude of the velocity. The change in momentum in the x direction is then

p r
Final Initial
momentum momentum
in x direction in x direction

� �2mux

� �mux � mux

Change in momentum � ¢ 1mux2 � final momentum � initial momentum

F �
m¢u

¢t
�

¢ 1mu2
¢t

F � ma � ma¢u

¢t
b

�
ux

L

1Collision frequency2x �
velocity in the x direction

distance between the walls

(a)

z

x

y

L

(b)

L

u

uz

L

uy

ux

(c)

uz

uz

uy
uy

uxy

u

ux

FIGURE A.4
(a) The Cartesian coordinate axes. (b) The velocity u of any gas particle can

be broken down into three mutually
perpendicular components, ux, uy,
and uz. This can be represented as a
rectangular solid with sides ux, uy, and
uz and body diagonal u.

(c) In the xy plane,

by the Pythagorean theorem. Since uxy

and ux are also perpendicular,

u2 � uxy
2 � uz

2 � ux
2 � uy

2 � uz
2

ux
2 � uy

2 � uxy
2

L
x

z

(a)

(b)

L

L

ux

u

x

z

ux

−ux

u

−u

FIGURE A.5
(a) Only the x component of the gas
particle’s velocity affects the frequency of
impacts on the shaded walls, the walls
that are perpendicular to the x axis.
(b) For an elastic collision, there is an exact
reversal of the x component of the velocity
and of the total velocity. The change in
momentum (final � initial) is then

�mux � mux � �2mux
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But we are interested in the force the gas particle exerts on the walls of the box. Since
we know that every action produces an equal but opposite reaction, the change in mo-
mentum with respect to the wall on impact is �(�2mux), or 2mux.

Recall that since force is the change in momentum per unit of time,

for the walls perpendicular to the x axis.
This expression can be obtained by multiplying the change in momentum per im-

pact by the number of impacts per unit of time:

p r
Change in momentum Impacts per
per impact unit of time

That is,

So far we have considered only the two walls of the box perpendicular to the x axis.
We can assume that the force on the two walls perpendicular to the y axis is given by

and that on the two walls perpendicular to the z axis by

Since we have shown that

the total force on the box is

Now since we want the average force, we use the average of the square of the veloc-
ity to obtain

Next, we need to compute the pressure (force per unit of area)

p r
The 6 sides Area of 
of the cube each side

�

2mu2

L

6L2 �
mu2

3L3

Pressure due to “average” particle �
force TOTAL

areaTOTAL

Force TOTAL �
2m

L
1u22

1u22
�

2m

L
1ux

2 � uy
2 � uz

22 �
2m

L
1u22

�
2mux

2

L
�

2muy
2

L
�

2muz
2

L

ForceTOTAL � forcex � forcey � forcez

u2 � ux
2 � uy

2 � uz
2

Forcez �
2muz

2

L

Forcey �
2muy

2

L

Forcex �
2mux

2

L

Forcex � 12mux2 aux

L
b � change in momentum per unit of time

Forcex �
¢ 1mux2

¢t
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Since the volume V of the cube is equal to L3, we can write

So far we have considered the pressure on the walls due to a single, “average” par-
ticle. Of course, we want the pressure due to the entire gas sample. The number of parti-
cles in a given gas sample can be expressed as follows:

where n is the number of moles and NA is Avogadro’s number.
The total pressure on the box due to n moles of a gas is therefore

Next we want to express the pressure in terms of the kinetic energy of the gas mol-
ecules. Kinetic energy (the energy due to motion) is given by where m is the mass
and u is the velocity. Since we are using the average of the velocity squared and
since we have

or

Thus, based on the postulates of the kinetic molecular model, we have been able to
derive an equation that has the same form as the ideal gas equation,

This agreement between experiment and theory supports the validity of the assumptions
made in the kinetic molecular model about the behavior of gas particles, at least for the
limiting case of an ideal gas.

PV
n

� RT

PV
n

� a2

3
bNA112 mu22

P � a2

3
b nNA112mu22

V

mu2 � 2112 mu22, 1u22,1
2 mu2,

P � nNA
mu2

3V

Number of gas particles � nNA

Pressure � P �
mu2

3V

Appendix Three Spectral Analysis

Although volumetric and gravimetric analyses are still very commonly used, spectroscopy is
the technique most often used for modern chemical analysis. Spectroscopy is the study of elec-
tromagnetic radiation emitted or absorbed by a given chemical species. Since the quantity of
radiation absorbed or emitted can be related to the quantity of the absorbing or emitting species
present, this technique can be used for quantitative analysis. There are many spectroscopic
techniques, as electromagnetic radiation spans a wide range of energies to include X rays, ul-
traviolet, infrared, and visible light, and microwaves, to name a few of its familiar forms. We
will consider here only one procedure, which is based on the absorption of visible light.

If a liquid is colored, it is because some component of the liquid absorbs visible light.
In a solution the greater the concentration of the light-absorbing substance, the more light
absorbed, and the more intense the color of the solution.

The quantity of light absorbed by a substance can be measured by a spectropho-
tometer, shown schematically in Fig. A.6. This instrument consists of a source that emits
all wavelengths of light in the visible region (wavelengths of �400 to 700 nm); a mono-
chromator, which selects a given wavelength of light; a sample holder for the solution
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being measured; and a detector, which compares the intensity of incident light I0 to the
intensity of light after it has passed through the sample I. The ratio I�I0, called the trans-
mittance, is a measure of the fraction of light that passes through the sample. The amount
of light absorbed is given by the absorbance A, where

The absorbance can be expressed by the Beer–Lambert law:

where � is the molar absorptivity or the molar extinction coefficient (in L/mol cm), l is
the distance the light travels through the solution (in cm), and c is the concentration of
the absorbing species (in mol/L). The Beer–Lambert law is the basis for using spectroscopy
in quantitative analysis. If � and l are known, measuring A for a solution allows us to cal-
culate the concentration of the absorbing species in the solution.

Suppose we have a pink solution containing an unknown concentration of Co2�(aq)
ions. A sample of this solution is placed in a spectrophotometer, and the absorbance is
measured at a wavelength where � for Co2�(aq) is known to be 12 L/mol cm. The ab-
sorbance A is found to be 0.60. The width of the sample tube is 1.0 cm. We want to de-
termine the concentration of Co2�(aq) in the solution. This problem can be solved by a
straightforward application of the Beer–Lambert law,

where

Solving for the concentration gives

To obtain the unknown concentration of an absorbing species from the measured ab-
sorbance, we must know the product �l, since

c �
A

�l

c �
A

�l
�

0.60

a12
L

mol � cm
b 11.0 cm2 � 5.0 � 10�2 mol/L

l � light path � 1.0 cm

� �
12 L

mol � cm

A � 0.60

A � �lc

�

�

A � �lc

A � �log
I

I0

Source Monochromator Sample Detector

I0 I

l

FIGURE A.6
A schematic diagram of a simple spectrophotometer. The source emits all wavelengths of visible
light, which are dispersed using a prism or grating and then focused, one wavelength at a time,
onto the sample. The detector compares the intensity of the incident light (I0) to the intensity of
the light after it has passed through the sample (l).
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We can obtain the product �l by measuring the absorbance of a solution of known con-
centration, since

Measured using a
o spectrophotometer

r Known from making up
the solution

However, a more accurate value of the product �l can be obtained by plotting A versus
c for a series of solutions. Note that the equation A � �lc gives a straight line with slope
�l when A is plotted against c.

For example, consider the following typical spectroscopic analysis. A sample of steel
from a bicycle frame is to be analyzed to determine its manganese content. The proce-
dure involves weighing out a sample of the steel, dissolving it in strong acid, treating the
resulting solution with a very strong oxidizing agent to convert all the manganese to per-
manganate ion (MnO4

�), and then using spectroscopy to determine the concentration of
the intensely purple MnO4

� ions in the solution. To do this, however, the value of �l for
MnO4

� must be determined at an appropriate wavelength. The absorbance values for four
solutions with known MnO4

� concentrations were measured to give the following data:

Concentration of
Solution MnO4

� (mol/L) Absorbance

1 7.00 � 10�5 0.175
2 1.00 � 10�4 0.250
3 2.00 � 10�4 0.500
4 3.50 � 10�4 0.875

A plot of absorbance versus concentration for the solutions of known concentration is shown
in Fig. A.7. The slope of this line (change in A�change in c) is 2.48 � 103 L/mol. This quan-
tity represents the product �l.

A sample of the steel weighing 0.1523 g was dissolved and the unknown amount of
manganese was converted to MnO4

� ions. Water was then added to give a solution with
a final volume of 100.0 mL. A portion of this solution was placed in a spectrophotometer,

�l �
A
c

1.0 × 10– 4 2.0 × 10– 4

Concentration (mol/L)

3.0 × 10– 4

0.10

0

0.20

0.30

0.40A
bs

or
ba

nc
e

0.50

0.60

0.70

0.80
0.780

Slope =

0.90

1.00

3.15 × 10– 4

0.558
2.25 × 10– 4

          = 2.48 × 103

�C = 2.25 × 10– 4

� A = 0.558

FIGURE A.7
A plot of absorbance versus concentration
of MnO4

� in a series of solutions of known
concentration.
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and its absorbance was found to be 0.780. Using these data, we want to calculate the per-
cent manganese in the steel. The MnO4

� ions from the manganese in the dissolved steel
sample show an absorbance of 0.780. Using the Beer–Lambert law, we calculate the con-
centration of MnO4

� in this solution:

There is a more direct way for finding c. Using a graph such as that in Fig. A.7 (of-
ten called a Beer’s law plot), we can read the concentration that corresponds to A �
0.780. This interpolation is shown by dashed lines on the graph. By this method, c �
3.15 � 10�4 mol/L, which agrees with the value obtained above.

Recall that the original 0.1523-g steel sample was dissolved, the manganese was con-
verted to permanganate, and the volume was adjusted to 100.0 mL. We now know that
[MnO4

�] in that solution is 3.15 � 10�4 M. Using this concentration, we can calculate
the total number of moles of MnO4

� in that solution:

Since each mole of manganese in the original steel sample yields a mole of MnO4
�, that is,

the original steel sample must have contained 3.15 � 10�5 mol of manganese. The mass
of manganese present in the sample is

Since the steel sample weighed 0.1523 g, the present manganese in the steel is

This example illustrates a typical use of spectroscopy in quantitative analysis. The
steps commonly involved are as follows:

1. Preparation of a calibration plot (a Beer’s law plot) by measuring the absorbance
values of a series of solutions with known concentrations.

2. Measurement of the absorbance of the solution of unknown concentration.

3. Use of the calibration plot to determine the unknown concentration.

1.73 � 10�3 g of Mn

1.523 � 10�1 g of sample
� 100 � 1.14%

3.15 � 10�5 mol of Mn �
54.938 g of Mn

1 mol of Mn
� 1.73 � 10�3 g of Mn

1 mol of MnO4
�1 mol of Mn

� 3.15 � 10�5 mol

mol of MnO4
� � 100.0 mL �

1 L

1000 mL
� 3.15 � 10�4 mol

L

c �
A

�l
�

0.780

2.48 � 103 L/mol
� 3.15 � 10�4 mol/L

Oxidation
88888888n

Appendix Four Selected Thermodynamic Data

Note: All values are assumed precise to at least �1.

Substance
and State

Aluminum
Al(s) 0 0 28
Al2O3(s) �1676 �1582 51
Al(OH)3(s) �1277
AlCl3(s) �704 �629 111

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2 Substance
and State

Barium
Ba(s) 0 0 67
BaCO3(s) �1219 �1139 112
BaO(s) �582 �552 70
Ba(OH)2(s) �946

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2

(continued)
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Appendix Four (continued)

Substance
and State

Barium, continued
BaSO4(s) �1465 �1353 132

Beryllium
Be(s) 0 0 10
BeO(s) �599 �569 14
Be(OH)2(s) �904 �815 47

Bromine
Br2(l) 0 0 152
Br2(g) 31 3 245
Br2(aq) �3 4 130
Br�(aq) �121 �104 82
HBr(g) �36 �53 199

Cadmium
Cd(s) 0 0 52
CdO(s) �258 �228 55
Cd(OH)2(s) �561 �474 96
CdS(s) �162 �156 65
CdSO4(s) �935 �823 123

Calcium
Ca(s) 0 0 41
CaC2(s) �63 �68 70
CaCO3(s) �1207 �1129 93
CaO(s) �635 �604 40
Ca(OH)2(s) �987 �899 83
Ca3(PO4)2(s) �4126 �3890 241
CaSO4(s) �1433 �1320 107
CaSiO3(s) �1630 �1550 84

Carbon
C(s) (graphite) 0 0 6
C(s) (diamond) 2 3 2
CO(g) �110.5 �137 198
CO2(g) �393.5 �394 214
CH4(g) �75 �51 186
CH3OH(g) �201 �163 240
CH3OH(l) �239 �166 127
H2CO(g) �116 �110 219
HCOOH(g) �363 �351 249
HCN(g) 135.1 125 202
C2H2(g) 227 209 201
C2H4(g) 52 68 219
CH3CHO(g) �166 �129 250
C2H5OH(l) �278 �175 161
C2H6(g) �84.7 �32.9 229.5
C3H6(g) 20.9 62.7 266.9
C3H8(g) �104 �24 270
C2H4O(g) (ethylene oxide) �53 �13 242
CH2PCHCN(g) 185.0 195.4 274
CH3COOH(l) �484 �389 160
C6H12O6(s) �1275 �911 212
CCl4 �135 �65 216

Chlorine
Cl2(g) 0 0 223
Cl2(aq) �23 7 121

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2 Substance
and State

Chlorine, continued
Cl�(aq) �167 �131 57
HCl(g) �92 �95 187

Chromium
Cr(s) 0 0 24
Cr2O3(s) �1128 �1047 81
CrO3(s) �579 �502 72
Copper
Cu(s) 0 0 33
CuCO3(s) �595 �518 88
Cu2O(s) �170 �148 93
CuO(s) �156 �128 43
Cu(OH)2(s) �450 �372 108
CuS(s) �49 �49 67

Fluorine
F2(g) 0 0 203
F�(aq) �333 �279 �14
HF(g) �271 �273 174

Hydrogen
H2(g) 0 0 131
H(g) 217 203 115
H�(aq) 0 0 0
OH�(aq) �230 �157 �11
H2O(l) �286 �237 70
H2O(g) �242 �229 189

Iodine
I2(s) 0 0 116
I2(g) 62 19 261
I2(aq) 23 16 137
I�(aq) �55 �52 106

Iron
Fe(s) 0 0 27
Fe3C(s) 21 15 108
Fe0.95O(s) (wustite) �264 �240 59
FeO �272 �255 61
Fe3O4(s) (magnetite) �1117 �1013 146
Fe2O3(s) (hematite) �826 �740 90
FeS(s) �95 �97 67
FeS2(s) �178 �166 53
FeSO4(s) �929 �825 121

Lead
Pb(s) 0 0 65
PbO2(s) �277 �217 69
PbS(s) �100 �99 91
PbSO4(s) �920 �813 149

Magnesium
Mg(s) 0 0 33
MgCO3(s) �1113 �1029 66
MgO(s) �602 �569 27
Mg(OH)2(s) �925 �834 64

Manganese
Mn(s) 0 0 32

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2
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Appendix Four (continued)

Substance
and State

Manganese, continued
MnO(s) �385 �363 60
Mn3O4(s) �1387 �1280 149
Mn2O3(s) �971 �893 110
MnO2(s) �521 �466 53
MnO4

�(aq) �543 �449 190

Mercury
Hg(l) 0 0 76
Hg2Cl2(s) �265 �211 196
HgCl2(s) �230 �184 144
HgO(s) �90 �59 70
HgS(s) �58 �49 78

Nickel
Ni(s) 0 0 30
NiCl2(s) �316 �272 107
NiO(s) �241 �213 38
Ni(OH)2(s) �538 �453 79
NiS(s) �93 �90 53

Nitrogen
N2(g) 0 0 192
NH3(g) �46 �17 193
NH3(aq) �80 �27 111
NH4

�(aq) �132 �79 113
NO(g) 90 87 211
NO2(g) 34 52 240
N2O(g) 82 104 220
N2O4(g) 10 98 304
N2O4(l) �20 97 209
N2O5(s) �42 134 178
N2H4(l) 51 149 121
N2H3CH3(l) 54 180 166
HNO3(aq) �207 �111 146
HNO3(l) �174 �81 156
NH4ClO4(s) �295 �89 186
NH4Cl(s) �314 �203 96

Oxygen
O2(g) 0 0 205
O(g) 249 232 161
O3(g) 143 163 239

Phosphorus
P(s) (white) 0 0 41
P(s) (red) �18 �12 23
P(s) (black) �39 �33 23
P4(g) 59 24 280
PF5(g) �1578 �1509 296
PH3(g) 5 13 210
H3PO4(s) �1279 �1119 110
H3PO4(l) �1267 — —
H3PO4(aq) �1288 �1143 158
P4O10(s) �2984 �2698 229

Potassium
K(s) 0 0 64
KCl(s) �436 �408 83

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2 Substance
and State

Potassium, continued
KClO3(s) �391 �290 143
KClO4(s) �433 �304 151
K2O(s) �361 �322 98
K2O2(s) �496 �430 113
KO2(s) �283 �238 117
KOH(s) �425 �379 79
KOH(aq) �481 �440 9.20

Silicon
SiO2(s) (quartz) �911 �856 42
SiCl4(l) �687 �620 240

Silver
Ag(s) 0 0 43
Ag�(aq) 105 77 73
AgBr(s) �100 �97 107
AgCN(s) 146 164 84
AgCl(s) �127 �110 96
Ag2CrO4(s) �712 �622 217
AgI(s) �62 �66 115
Ag2O(s) �31 �11 122
Ag2S(s) �32 �40 146

Sodium
Na(s) 0 0 51
Na�(aq) �240 �262 59
NaBr(s) �360 �347 84
Na2CO3(s) �1131 �1048 136
NaHCO3(s) �948 �852 102
NaCl(s) �411 �384 72
NaH(s) �56 �33 40
NaI(s) �288 �282 91
NaNO2(s) �359
NaNO3(s) �467 �366 116
Na2O(s) �416 �377 73
Na2O2(s) �515 �451 95
NaOH(s) �427 �381 64
NaOH(aq) �470 �419 50

Sulfur
S(s) (rhombic) 0 0 32
S(s) (monoclinic) 0.3 0.1 33
S2�(aq) 33 86 �15
S8(g) 102 50 431
SF6(g) �1209 �1105 292
H2S(g) �21 �34 206
SO2(g) �297 �300 248
SO3(g) �396 �371 257
SO4

2�(aq) �909 �745 20
H2SO4(l) �814 �690 157
H2SO4(aq) �909 �745 20

Tin
Sn(s) (white) 0 0 52
Sn(s) (gray) �2 0.1 44
SnO(s) �285 �257 56
SnO2(s) �581 �520 52

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2

(continued)
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Appendix Four (continued)

Substance
and State

Tin, continued
Sn(OH)2(s) �561 �492 155

Titanium
TiCl4(g) �763 �727 355
TiO2(s) �945 �890 50

Uranium
U(s) 0 0 50
UF6(s) �2137 �2008 228
UF6(g) �2113 �2029 380
UO2(s) �1084 �1029 78
U3O8(s) �3575 �3393 282
UO3(s) �1230 �1150 99

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2 Substance
and State

Xenon
Xe(g) 0 0 170
XeF2(g) �108 �48 254
XeF4(s) �251 �121 146
XeF6(g) �294
XeO3(s) 402
Zinc
Zn(s) 0 0 42
ZnO(s) �348 �318 44
Zn(OH)2(s) �642
ZnS(s) (wurtzite) �193
ZnS(s) (zinc blende) �206 �201 58
ZnSO4(s) �983 �874 120

S�1J/K � mol2¢G�f1kJ/mol2¢H�f1kJ/mol2

A5.1 Values of Ka for Some Common Monoprotic Acids

Name Formula Value of Ka

Hydrogen sulfate ion HSO4
� 1.2 � 10�2

Chlorous acid HClO2 1.2 � 10�2

Monochloracetic acid HC2H2ClO2 1.35 � 10�3

Hydrofluoric acid HF 7.2 � 10�4

Nitrous acid HNO2 4.0 � 10�4

Formic acid HCO2H 1.8 � 10�4

Lactic acid HC3H5O3 1.38 � 10�4

Benzoic acid HC7H5O2 6.4 � 10�5

Acetic acid HC2H3O2 1.8 � 10�5

Hydrated aluminum(III) ion [Al(H2O)6]
3� 1.4 � 10�5

Propanoic acid HC3H5O2 1.3 � 10�5

Hypochlorous acid HOCl 3.5 � 10�8

Hypobromous acid HOBr 2 � 10�9

Hydrocyanic acid HCN 6.2 � 10�10

Boric acid H3BO3 5.8 � 10�10

Ammonium ion NH4
� 5.6 � 10�10

Phenol HOC6H5 1.6 � 10�10

Hypoiodous acid HOI 2 � 10�11
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A5.2 Stepwise Dissociation Constants for Several
Common Polyprotic Acids

Name Formula Ka1
Ka2

Ka3

Phosphoric acid H3PO4 7.5 � 10�3 6.2 � 10�8 4.8 � 10�13

Arsenic acid H3AsO4 5 � 10�3 8 � 10�8 6 � 10�10

Carbonic acid H2CO3 4.3 � 10�7 5.6 � 10�11

Sulfuric acid H2SO4 Large 1.2 � 10�2

Sulfurous acid H2SO3 1.5 � 10�2 1.0 � 10�7

Hydrosulfuric acid H2S 1.0 � 10�7 �10�19

Oxalic acid H2C2O4 6.5 � 10�2 6.1 � 10�5

Ascorbic acid H2C6H6O6 7.9 � 10�5 1.6 � 10�12

(vitamin C)
Citric acid H3C6H5O7 8.4 � 10�4 1.8 � 10�5 4.0 � 10�6

A5.3 Values of Kb for Some Common Weak Bases

Conjugate
Name Formula Acid Kb

Ammonia NH3 NH4
� 1.8 � 10�5

Methylamine CH3NH2 CH3NH3
� 4.38 � 10�4

Ethylamine C2H5NH2 C2H5NH3
� 5.6 � 10�4

Diethylamine (C2H5)2NH (C2H5)2NH2
� 1.3 � 10�3

Triethylamine (C2H5)3N (C2H5)3NH� 4.0 � 10�4

Hydroxylamine HONH2 HONH3
� 1.1 � 10�8

Hydrazine H2NNH2 H2NNH3
� 3.0 � 10�6

Aniline C6H5NH2 C6H5NH3
� 3.8 � 10�10

Pyridine C5H5N C5H5NH� 1.7 � 10�9
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A5.4 Ksp Values at 25°C for Common Ionic Solids

Ionic Solid Ksp (at 25°C) Ionic Solid Ksp (at 25°C) Ionic Solid Ksp (at 25°C)

Fluorides Hg2CrO4* 2 � 10�9 Co(OH)2 2.5 � 10�16

BaF2 2.4 � 10�5 BaCrO4 8.5 � 10�11 Ni(OH)2 1.6 � 10�16

MgF2 6.4 � 10�9 Ag2CrO4 9.0 � 10�12 Zn(OH)2 4.5 � 10�17

PbF2 4 � 10�8 PbCrO4 2 � 10�16 Cu(OH)2 1.6 � 10�19

SrF2 7.9 � 10�10 Hg(OH)2 3 � 10�26

CaF2 4.0 � 10�11 Carbonates Sn(OH)2 3 � 10�27

NiCO3 1.4 � 10�7
Cr(OH)3 6.7 � 10�31

Chlorides CaCO3 8.7 � 10�9
Al(OH)3 2 � 10�32

PbCl2 1.6 � 10�5 BaCO3 1.6 � 10�9
Fe(OH)3 4 � 10�38

AgCl 1.6 � 10�10 SrCO3 7 � 10�10
Co(OH)3 2.5 � 10�43

Hg2Cl2* 1.1 � 10�18 CuCO3 2.5 � 10�10

ZnCO3 2 � 10�10 Sulfides
Bromides MnCO3 8.8 � 10�11 MnS 2.3 � 10�13

PbBr2 4.6 � 10�6
FeCO3 2.1 � 10�11 FeS 3.7 � 10�19

AgBr 5.0 � 10�13
Ag2CO3 8.1 � 10�12 NiS 3 � 10�21

Hg2Br2* 1.3 � 10�22
CdCO3 5.2 � 10�12 CoS 5 � 10�22

Iodides PbCO3 1.5 � 10�15 ZnS 2.5 � 10�22

PbI2 1.4 � 10�8
MgCO3 1 � 10�5 SnS 1 � 10�26

AgI 1.5 � 10�16
Hg2CO3* 9.0 � 10�15 CdS 1.0 � 10�28

Hg2I2* 4.5 � 10�29
PbS 7 � 10�29

Hydroxides CuS 8.5 � 10�45

Sulfates Ba(OH)2 5.0 � 10�3
Ag2S 1.6 � 10�49

CaSO4 6.1 � 10�5
Sr(OH)2 3.2 � 10�4

HgS 1.6 � 10�54

Ag2SO4 1.2 � 10�5
Ca(OH)2 1.3 � 10�6

SrSO4 3.2 � 10�7
AgOH 2.0 � 10�8 Phosphates

PbSO4 1.3 � 10�8
Mg(OH)2 8.9 � 10�12 Ag3PO4 1.8 � 10�18

BaSO4 1.5 � 10�9
Mn(OH)2 2 � 10�13 Sr3(PO4)2 1 � 10�31

Cd(OH)2 5.9 � 10�15 Ca3(PO4)2 1.3 � 10�32

Chromates Pb(OH)2 1.2 � 10�15 Ba3(PO4)2 6 � 10�39

SrCrO4 3.6 � 10�5 Fe(OH)2 1.8 � 10�15 Pb3(PO4)2 1 � 10�54

*Contains Hg2
2� ions. Ksp � [Hg2

2�][X�]2 for Hg2X2 salts.
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A5.5 Standard Reduction Potentials at 25°C (298 K) for
Many Common Half-Reactions

Half-Reaction e° (V) Half-Reaction e° (V)

F2 � 2e� n 2F� 2.87 O2 � 2H2O � 4e� n 4OH� 0.40
Ag2� � e� n Ag� 1.99 Cu2� � 2e� n Cu 0.34
Co3� � e� n Co2� 1.82 Hg2Cl2 � 2e� n 2Hg � 2Cl� 0.34
H2O2 � 2H� � 2e� n 2H2O 1.78 AgCl � e� n Ag � Cl� 0.22
Ce4� � e� n Ce3� 1.70 SO4

2� � 4H� � 2e� n H2SO3 � H2O 0.20
PbO2 � 4H� � SO4

2� � 2e� n PbSO4 � 2H2O 1.69 Cu2� � e� n Cu� 0.16
MnO4

� � 4H� � 3e� n MnO2 � 2H2O 1.68 2H� � 2e� n H2 0.00
2e� � 2H� � IO4

� n IO3
� � H2O 1.60 Fe3� � 3e� n Fe �0.036

MnO4
� � 8H� � 5e� n Mn2� � 4H2O 1.51 Pb2� � 2e� n Pb �0.13

Au3� � 3e� n Au 1.50 Sn2� � 2e� n Sn �0.14
PbO2 � 4H� � 2e� n Pb2� � 2H2O 1.46 Ni2� � 2e� n Ni �0.23
Cl2 � 2e� n 2Cl� 1.36 PbSO4 � 2e� n Pb � SO4

2� �0.35
Cr2O7

2� � 14H� � 6e� n 2Cr3� � 7H2O 1.33 Cd2� � 2e� n Cd �0.40
O2 � 4H� � 4e� n 2H2O 1.23 Fe2� � 2e� n Fe �0.44
MnO2 � 4H� � 2e� n Mn2� � 2H2O 1.21 Cr3� � e� n Cr2� �0.50
IO3

� � 6H� � 5e� n �
1
2

�I2 � 3H2O 1.20 Cr3� � 3e� n Cr �0.73
Br2 � 2e� n 2Br� 1.09 Zn2� � 2e� n Zn �0.76
VO2

� � 2H� � e� n VO2� � H2O 1.00 2H2O � 2e� n H2 � 2OH� �0.83
AuCl4

� � 3e� n Au � 4Cl� 0.99 Mn2� � 2e� n Mn �1.18
NO3

� � 4H� � 3e� n NO � 2H2O 0.96 Al3� � 3e� n Al �1.66
ClO2 � e� n ClO2

� 0.954 H2 � 2e� n 2H� �2.23
2Hg2� � 2e� n Hg2

2� 0.91 Mg2� � 2e� n Mg �2.37
Ag� � e� n Ag 0.80 La3� � 3e� n La �2.37
Hg2

2� � 2e� n 2Hg 0.80 Na� � e� n Na �2.71
Fe3� � e� n Fe2� 0.77 Ca2� � 2e� n Ca �2.76
O2 � 2H� � 2e� n H2O2 0.68 Ba2� � 2e� n Ba �2.90
MnO4

� � e� n MnO4
2� 0.56 K� � e� n K �2.92

I2 � 2e� n 2I� 0.54 Li� � e� n Li �3.05
Cu� � e� n Cu 0.52
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Appendix Six SI Units and Conversion Factors

Length

SI unit: meter (m)

1 meter � 1.0936 yards
1 centimeter � 0.39370 inch
1 inch � 2.54 centimeters �

(exactly)
1 kilometer � 0.62137 mile
1 mile � 5280 feet

� 1.6093 kilometers
1 angstrom � 10�10 meter

� 100 picometers

Mass

SI unit: kilogram (kg)

1 kilogram � 1000 grams
� 2.2046 pounds

1 pound � 453.59 grams
� 0.45359 kilogram
� 16 ounces

1 ton � 2000 pounds
� 907.185 kilograms

1 metric ton � 1000 kilograms
� 2204.6 pounds

1 atomic
mass unit � 1.66056 � 10�27 kilograms

Volume

SI unit: cubic meter (m3)

1 liter � 10�3 m3

� 1 dm3

� 1.0567 quarts
1 gallon � 4 quarts

� 8 pints
� 3.7854 liters

1 quart � 32 fluid ounces
� 0.94633 liter

Temperature

SI unit: kelvin (K)

0 K � �273.15°C
� �459.67°F

K � °C � 273.15

°C � (°F � 32)

°F � (°C) � 32
9

5

5

9

Energy

SI unit: joule (J)

1 joule � 1 kg � m2/s2

� 0.23901 calorie
� 9.4781 � 10�4 btu

(British thermal unit)
1 calorie � 4.184 joules

� 3.965 � 10�3 btu
1 btu � 1055.06 joules

� 252.2 calories

Pressure

SI unit: pascal (Pa)

1 pascal � 1 N/m2

� 1 kg/m s2

1 atmosphere � 101.325 kilopascals
� 760 torr (mmHg)
� 14.70 pounds per

square inch
1 bar � 105 pascals

�


